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Climateinjustice persists as those least responsible often bear the greatest
impacts, both between and within countries. Here we show how GHG

emissions from consumption and investments attributable to the wealthiest
population groups have disproportionately influenced present-day

climate change. We link emissions inequality over the period 1990-2020 to
regional climate extremes using an emulator-based framework. We find that
two-thirds (one-fifth) of warming is attributable to the wealthiest 10% (1%),
meaning thatindividual contributions are 6.5 (20) times the average per
capita contribution. For extreme events, the top 10% (1%) contributed

7 (26) times the average to increases in monthly 1-in-100-year heat extremes
globally and 6 (17) times more to Amazon droughts. Emissions from the
wealthiest 10% in the United States and Chinaled to atwo- to threefold
increase in heat extremes across vulnerable regions. Quantifying the link
between wealth disparities and climate impacts can assist in the discourse
on climate equity and justice.

Over the past two decades, extreme events attributable to climate
change resulted in an annual average of US$143 billion in damages'.
How these costs could and should be covered—both between and
within countries—is a matter of debate”. Central to this debate is the
stark disparity between those responsible for emissions and those
affected by theirimpacts. The wealthiest 10% of the global population
accounted for nearly half of global emissions in 2019 through private
consumption and investments, whereas the poorest 50% accounted for
only one-tenth of global emissions’. At the same time, regions with low
historicemissions andincome levels are typically more frequently and
severely exposed to climate impacts*® and have limited resources for
adaptation®. This cause-and-effectinjustice is widely acknowledged’,
yet aquantification of how emissions inequality translatesinto unequal
accountability for the resulting global temperature levels and extreme
climate events is missing. This translation should account for the indi-
vidual warming contributions of emissions of non-CO, GHGs, such as
methane (CH,), given their major role in recent warming®.

In this study we combine wealth-based carbon inequality assess-
ments® with an emulator-based climate modelling framework’ to

systematically attribute changes in global mean temperature (GMT)
levels and grid-cell-level climate extremes to emissions from different
wealth groups. We use the Model for the Assessment of the Greenhouse
Gas Induced Climate Change (MAGICC)', a simple climate model,
in conjunction with the Modular Earth System Model Emulator for
Monthly Temperature and Precipitation (MESMER-M-TP)", a model
thatis able to generate large ensembles of spatially explicit monthly
temperature and precipitation data that closely resemble those of
complex Earth system models at a fraction of the cost.

We use attribution science frameworks to link human-induced
GHG emissions to changes in the modelled frequency and intensity
of extremes™. These frameworks were originally developed to attri-
bute changes in total human emissions'". Today, they are increas-
ingly applied for source attribution; that is, to quantify the relative
contributions of individual emitter groups, such as companies or
countries''®. When attributing impacts among multiple emitters,
various approaches exist and serve distinct purposes” s, Here we assess
the changes in the characteristics of monthly extremes but for the
emissions attributable to a specific emitter group™*s.
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Fig.1| Overview of the modelling framework using aschematic example.
Counterfactual emissions were converted into GMT using the simple climate
model MAGICC and subsequently translated into grid-cell-level realizations
of climatic variables using MESMER-M-TP. a, Counterfactual CO, emissions
pathways. Historic emissions with and without contributions from selected

Year Temperature (°C)

emitter groups after 1990 (orange). b, Median GMT levels for historic and
counterfactual emissions pathways (solid lines) along with 5th-95th confidence
intervals (shaded envelopes) derived from 600 ensemble members. ¢, Reference,
present-day and counterfactual distributions at a single grid-cell using
temperature as anexample.

We generate counterfactual emission pathways by subtracting the
1990-2019 emissions of specific emitter groups, namely the wealthi-
est 10%, 1% and 0.1% globally, as well as in the United States, EU27,
India and China (Fig. 1b). Emissions data are drawn from ref. 3 and
include emissions from domestic consumption, public and private
investments and trade. These emissions are attributed primarily to
consumers, except emissions from capital formation in production
sectors, which are attributed to firm owners®. Emissions are reported
as a basket of GHGs with warming expressed in CO, equivalents. We
convert these counterfactual pathways into GMT levels and gridded
climatic variables (Fig. 1a), allowing us to compare the 2020 climate
against the hypothetical 2020 climate state that we would observe if
these groups had not emitted. Specifically, we attribute GMT levels
and changesin the probability and intensity of extremely hot and dry
months (Fig. 1c). Prolonged heat poses asignificant burden on human
health" and sustained precipitation deficits impair crop yields and
threaten water resources®’, meaning that both climate extremes are
highly relevantin driving climate impacts. We measure meteorological
droughts with the standardized precipitation index computed over
3-month periods (SPI-3)*°.

We quantify climate impacts associated with wealthy emitters
and compare them to the global average per capita contribution. We
do not assess what would constitute fair or just emissions, nor do we
assign direct responsibility for the resulting impacts. For illustration,
we also provide counterfactual warming outcomes based on rescal-
ing global emissions according to the per capita profile of individual
income percentiles.

Inequality in attributed global warming
contributions
Our modelling framework depicts natural variability and uncer-
tainty in the global response to emission changes (Methods). Unless
mentioned otherwise, we provide median results with the 5th-95th
confidenceintervalsin parentheses. All results are statistically signifi-
cant (established via a one-sample t-tests, Methods) unless explicitly
marked otherwise. As our database provides only basket emissions, we
derived the mainresults by assuming that emissions for each GHG scale
proportionally with the globally aggregated emissions (Methods). We
explore the sensitivity to this assumptionin Supplementary Section 2.
GMT in 2020 is 0.61 °C (0.45-0.83 °C) higher than in 1990. We
found thatabout 65% (0.40 °C (0.27-0.56 °C)) of thisincrease is attrib-
utable to the global top 10%, 20% (0.12 °C (0.09-0.17 °C)) to the top
1% and 8% (0.05 °C (0.03-0.07°C)) to the top 0.1% (Fig. 2a and Supple-
mentary Table 3). These warming contributions are higher (by about

one-fifth) than the respective group’s contributions to aggregated
GHG basket emissions (Supplementary Table 2), underscoring the
importance of non-CO, GHGs? (see also Supplementary Section 2).

To putthese numbersinto perspective, we defined agroup’s equal
shareas the contribution to warming they would have if their per capita
impact matched the global average. Therefore, we scaled the total
GMT increase according to the group’s share of the global population
(for example, the equal share of the global top 10% would be 10% of
the full 0.61 °C increase). We then derived climate inequality factors
(CIFs) as the group’s actual contribution to global warming relative
to their equal share. CIFs increase from 6.5 for the top 10% to 20 (77)
forthetop1%(0.1%), indicating an amplification of climate inequality
withincreasing wealth.

The full depth of the disproportionin contributions to GMT level
becomes tangible when global emissions are rescaled according to
the per capita profile of global income groups (Fig. 2b). If the entire
world population had emitted like the bottom 50%, there would
have been minimal additional warming since 1990. However, if the
entire world population had emitted like the top 10%, 1% or 0.1%, the
GMT increase since 1990 would have been 2.9 °C, 6.7 °C or12.2 °C.

Between1990 and 2020, emissions from the global top 10% arose
primarily in the world’s highest emitting countries: the United States,
the EU27, China and India (Fig. 2c¢). Note that the composition of
the global top 10% shifts over time (Supplementary Fig. 1), and while
our focus is on wealthy individuals from the world’s largest econo-
mies, those from smaller (wealthier, as well as less wealthy) countries
also contribute disproportionately’. Income levels from regional top
emitters deviate from their global counterparts: the top10%and 1% in
the United States and the EU27 (India and China) are wealthier (poorer)
than the globally wealthiest 10% and 1% (Fig. 2d).

Attributed GMT shares by regional emitter groups combine
within- and between-region inequality. In the United States (EU27),
the top 10% contribute 3.1 (2.8) times more to global warming than
the average citizen, but 17 (8) times more than the global average. For
the United States, the contribution of the top 10% alone exceedes the
entire country’s equal share. This relative inequality increases with
increasing wealth: the top 1% in the United States (EU27) contribute
53 (21) times their equal shares, and the top 0.1% contribute 190 (64)
times their equal shares. In China, where the overall CIF is near 1, the
top10%,1%and 0.1% emit 4,13 and 50 times their equal shares, showing
even greater regional influence from societal elites. Similarly, in India,
where the national CIF is 0.3 (implying that the countries per capita
average emissions are below the global average), the top 10%, 1% and
0.1% emit1.2,4 and 10 times the global average.
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Fig. 2| Attributed 1990-2020 GMT increases by emitter group. a, Median
GMT increase over 1990-2020 and the shares attributed to global top 10%, 1%
and 0.1%. Hatched areas indicate the warming for each group based on an equal
per capita contribution to warming. CIFs indicating the group’s contribution to
global warmingrelative to the average contribution are given above the bars.
Vertical lines represent the 5th-95th confidence intervals from natural variability
and uncertainty in the global temperature response. Circles highlight median
values from the sensitivity analysis (Methods; the lower circleis CO,-based
emissions and the upper circle is non-CO,-based emissions). Estimates are based
on 600 ensemble members each. b, Median hypothetical GMT increase from
1990-2020 if everyone emitted like the given income groups, with the 5th-95th

confidence intervals represented as vertical lines. Estimates are based on 600
ensemble members. ¢, Regional breakdown of the global top 10%,1% and 0.1% in
2019.d, Global (solid line) and regional (symbols) income distributions in 2019.
e, Same as abut for the regional top 10%, 1% and 0.1% in the United States, the
EU27,India and China. Grey bars highlight the median GMT increase attributable
to eachregion as awhole. Two CIFs are given: the lighter (darker) value is relative
to the country’s equal share (actual emissions) and measures global (regional)
inequality. Vertical lines represent the 5th-95th confidence intervals from
natural variability and uncertainty in the global temperature response. Circles
highlight median values from the sensitivity analysis. Estimates are based on 600
ensemble members each.

Major disparitiesin attributable extremes
worldwide
We attribute regional increases in the frequency of extremely hot
(dry) months, here defined as 1-in-100-year events in a pre-industrial
climate, to the emissions of the global top 10% (Fig. 3a), so throughout
this Article extremes or extreme events refer toamonth being atleast as
hot (dry) asthe hottest (driest) 1% of monthsina pre-industrial climate.
Westate attribution results as additional event counts over amodelled
100-year period of current climate conditions compared with those in
1990 (Methods). For example, 10 additional attributable eventsindicate
thatapre-industrial 1-in-100-year event happens an additional 10 times
within 100 years, meaning that its probability has increased tenfold.
For heat extremes, changes are most (least) pronounced in
August (February), where 11.5 [8.5-15.4] (3.5 [2.4-4.3]) additional
events are attributable to the global top 10%. These changes refer
to the global median over land that is predominantly located on the
Northern Hemisphere. Areas in strongly affected regions, such as the
Amazonregion, Southeast Asia or central Africa, face months with up
to30-foldincreasesin probability (see also Supplementary Figs. 5-8).
To account for differences in seasonality between the Northern
Hemisphere and Southern Hemisphere, we assessed heat extremes
during the month with peak temperatures (Supplementary Fig. 4).
Emissions from 1990-2020 led to a 12.3-fold (9.7-17.9) increase in
the probability of heat extremes in the peak temperature month.

The top 10% (1%) contribute 7.3 (25.7) times the global average to this
(Supplementary Figs. 9-13e). In addition, the intensities of these
extremes increased by 0.83 °C (0.75-0.97 °C) since 1990. Of this
increase, 0.55°C (0.50-0.67 °C) (0.17 °C (0.16-0.21°C)) is attributable
tothetop10% (1%), suggesting that their contributionis 6.7 (21.1) times
higher than the global average (Supplementary Figs. 9-13).
Attributionresults for meteorological drought extremes strongly
depend onregionand month, withrobust drying found mainlyin Central
America, the Amazon, the Mediterranean, southern Africa and north-
ern Australia (Fig. 3d and Supplementary Figs. 5-8). This is expected,
given the considerable intermodel disagreement and large uncertain-
ties in regional precipitation projections?**. We found the strongest
attributable drying trend in the Amazon region in October. Overall,
the region faces a threefold increase (1.7-4.2) in extreme probability
compared with 1990 (Fig. 3b). The top 10% (1%) contribute 6.1 (16.7)
timestheglobal averageto thisincrease. The Amazonregionis of global
importance, given its uniquely biodiverse system and its major role in
the global carbon cycle. Drought events over the past century have
already negativelyimpacted carbon storage in Amazonianrainforests?.
Overall, the spatial disparity in attributable changes at the
grid-cell-level (Fig. 3 and Supplementary Figs. 5-13) implies that the
regions thatdisproportionately contribute to the emissions of the top
10% (for example, the EU27 and the United States; Fig. 2) face smaller
increases than regions that have contributed very little (for example,
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Fig. 3 | Frequency change of 1-in-100-year monthly heat and meteorological
drought events attributable to global top emitters. a,b, Monthly distributions
of heat extremes (a) and drought extremes in the Amazon (b) across grid cells
attributable to the global top 10%. Distributions were derived by first computing
the median attribution results at each grid cell (estimated from 15,000 ensemble
members each) and then computing statistics across all 2,652 grid cells. Colour
shading is qualitative. c¢,d, Spatial distribution of the median number of heat (c)
and drought (d) extremes during peak temperature months attributable to the
global top 10%. Median estimates are derived from 15,000 ensemble members.

Hatched regions indicate insignificant results and/or insufficient model
agreement. e,f, Median number of additional heat (e) and drought (f) extremes
by region (highlighted on the mapsin cand d). CIFsindicating the group’s
contribution to extremes relative to the average contribution are given above
the bars. Vertical lines correspond to 5th-95th confidence intervals. We omit
showing global drought estimates because of insufficient agreement among
grid-cells. Distributions were derived by first computing median attribution
results at each grid cell (estimated from 15,000 ensemble members each) and
then computing statistics across all grid cells within each region.

western North America and west and central Europe compared with
the Amazon region and west southern Africain Fig. 3c,d).

Therelatively small (attributable) changes over India and parts of
Chinaandthesimultaneously high intermodel disagreement are worth
noting, given that they areinconsistent with the increasing number of
climate-related disasters Indiais already facing’. We assume that this
is related to the climate effects of air pollution, which we discuss in
greater detail in Supplementary Section 3.

Attributing transboundary impacts of regional
emissions

The inequality in warming contributions from affluent groups
in high-emitting regions exceeds the inequality in their global

counterparts (Fig. 2). This disparity also appears at the grid-cell-level:in
the global median, emissions fromthe top10% (1%) in the United States
areassociated with 1.3 (1.0-1.8) (0.3 (0.3-0.5)) additional 1-in-100-year
heat events during peak temperature months. Thisimpact represents
23(60) times the global average contributionand about 3 (2) timesthe
relative contribution of the global top 10% (1%) (Fig.3). Theincreasein
extreme heat is unevenly distributed across regions. For example, in
heat-affected areas such as the Amazon and southeast Africa, emissions
fromthetop10%in China (the United States) arelinked to 2.7 (1.9-3.2)
(2.5(1.7-2.8)) and 2.7 (1.1-3.4) (2.5 (1.0-3.2)) additional occurrences of
extreme heat during months with peak temperatures (Fig. 4).Inthese
areas, we can also robustly attribute heat extremes to the regional
top 1%. In the Amazon, 0.8 (0.7-1.0) additional heat extremes are
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Fig. 4 |Increase in the frequency of 1-in-100-year peak summer heat extremes
inselected regions attributable to the top 10% and 1% of emitters. Left: median
number of additional heat extremes in selected regions that are attributable to
the top 10% of emitters in China, the United States, the EU27 and India. Right:
same as on the left but for the top 1% of emitters. Wider bars indicate that more

events are attributable to a given emitter group. The values in the bars indicate
the additional numbers of events over the course of 100 years. Median estimates
were derived by first computing median attribution results at each grid cell
(estimated from 15,000 ensemble members for each) and then computing
statistics across grid cells within each region.

attributable to the top 1% in China. This corresponds to anincrease in
occurrence frequency of 80%.

Attributing changesin extreme events to country-specific wealthy
emitter groups becomes increasingly challenging as emitter groups
decrease in per capita size, meaning that their cumulative emissions
decrease even if their relative emissions contributions increase. Pro-
jectedtemperature distributions are characterized by strong changes
inthetrend and by consistency across models, allowing robust attribu-
tion results even for seemingly small emission amounts, particularly
in highly affected regions. The magnitude depends on the definition
of extremes, with tail risks seeing the strongest increase (Supplemen-
tary Figs. 18-21). For droughts, the situation is more complex. The
SPI-3 signal is dominated by variability and considerable intermodel
disagreement, which prevented us from deriving robust attribution
results when emissions are small.

Discussion

This study introduces a framework to link wealth-based emissions to
shiftsin GMT and to changesin regional monthly heat and meteorologi-
cal drought extremes. We found that the wealthiest 10% contributed
6.5times moreto global warming than the average, withthetop 1% and
0.1% contributing 20 and 76 times more, respectively. For heat, this
imbalance is more pronounced at the grid-cell-level: the wealthiest 10%
and 1% contributed over 7 and 25 times more than the global average to
theincreaseinfrequency of pre-industrial 1-in-100-year heat extremes
during months with peak summer temperatures. The warming contri-
butions of the wealthy are associated with considerable transboundary
effects—for example, the contributions of the wealthiest 10% within
the United States and Chinaled to a two- to threefold increase in heat
extremes across vulnerable regions such as the Amazon, Southeast
Asiaand southeast Africa. The robust attribution of drought signals is
more complex. We found the strongest signalsin the Amazonregionin
October, where the emissions of the global top10% (1%) led to a 2.3-fold
(0.8-fold) increase in the frequency of extreme droughts.

Our analysis also underscores the critical role of CH, emissionsin
near-termwarming (Supplementary Fig. 2) and calls for new research
to disentangleincome-based emissions at the level of individual gases.
Reducing CH, emissions in line with Paris Agreement-compatible
pathways could yield immediate reductions in global temperatures
and climate extremes?.

We note that our study focuses on monthly extreme heat (that is,
extremely hot months), meaning that heatwaves—defined as prolonged
periods of abnormally high temperatures lasting from two days to
months*®—do not directly relate to our metric. However, the prob-
ability of extreme daily temperatures is amplified during extremely
hot months®’, implying that attributable results for short-duration
heatwaves might be even more pronounced. Further researchis needed
to explicitly explore this relationship.

Wealth-based emissions comprise private consumption and
investment in capital formation across production sectors that sup-
ply goods and services consumed by society. Recognizing the associ-
ated unequal warming contributions caninform policy interventions.
For example, deliberation over a coordinated global wealth tax can
draw on this work, illustrating the climate co-benefits of attenuating
stark wealth-based disparities in climate impact responsibilities®*?'.
The transboundary impacts we identify highlight how high-emitting
individuals contribute tointensified extremes, evenin distant regions.
Similarly, the warming attributable to the investments of the wealthy
underscores the need torealign financial flows to meet global climate
goals®. This is particularly relevant for the wealthiest 1% and 0.1%,
whose transboundary contributions to worsening local extremes arise
primarily through investments, rather than consumption. Efforts to
redirect these financial flows should also consider the shared respon-
sibilities of governments to expedite systemic changes in financial and
regulatory structures®.

Our granular impact analysis shows that low-income regions
incur the brunt of the harm caused by emissions concentrated
among wealthier populations worldwide. From an adaptation and
loss-and-damage perspective, this provides a basis for policy dis-
cussions around contributions to compensatory and preventative
measures. The amounts of adaptation and loss-and-damage finance
provided currently are minuscule compared with the assessed needs™.
Ourwork motivates innovative policy instruments targeted at wealthy
individuals to bridge these glaring finance gaps®. Such policies can also
improve perceptions of climate justice, a vital factor in fostering social
acceptance of climate action®**”. Moving towards evidence-based and
targeted policies that reflect polluter-pays principles, including on
the domestic level in terms of individual contributions, may therefore
be an important cornerstone to enhance policy support for climate
actioningeneral.
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Considerations of our results in policy debates must, how-
ever, recognize the conceptual challenges and value judgements in
our approach and implementation. First, our attribution relies on
consumption-based emissions accounting, allocating emissions
between consumers and shareholders through shared ownership (see
ref. 3). Our approach contrasts with production-based approaches
used to quantify the responsibilities of producers®. Exploring diverse
accounting frameworks is key to developing policy mechanisms that
address multiple dimensions, but requires carein determining responsi-
bility. Second, we employ the ‘but for’ attribution method. This approach
directly links emissions to observed climate change while accounting
for the timing of emissions and impacts. However, it is sensitive to the
sequence of emissions removal and the design of the counterfactual
scenarios'®, Third, our approach is limited to changes in climate haz-
ards only, and does not account for on-the-ground vulnerabilities and
exposure, which are often key to driving the eventual impact of extreme
climate events™. Integrating other causal drivers into extreme event
attribution analysisincreasingly allows us to address those limitations®*
inastep towards using extreme event attributionto informthe discourse
on loss and damage*®*. At the same time, wealth levels are a key deter-
minant for adaptive capacity and vulnerability in the face of climate
change, particularly at the levels of households and individuals***.
We would therefore expect wealth-related drivers of vulnerability
and exposure to further exacerbate the inequalities in responsibilities
and experience of the impacts of the climate hazards we studied here.

All quantitative estimates are tied to these three assumptions,
and we must recognize the choices and value judgements involved
in the analysis when evaluating the ethical and legal implications of
our findings.

Our analysis is further limited by the lack of data on how GHG
emission compositions vary with income and wealth. This limits the
accuracy of our results, given the role of non-CO, GHGs in recent
warming. In addition, our drought indicator only considers pre-
cipitation, which may lead to underestimations in drought risks*.
Finally, our analysis is based on modelled data, which may deviate
from observations***,

Accordingly, our analysis does not explicitly assign full responsibil-
ity for resulting climate impacts, nor does it determine fair emission
levels for any income group. Such determinations require anintegrated
view of fairness, justice and socio-economic factors*®*’, with different
reference points for societies at varying levels of development.

In conclusion, our findings demonstrate how individual emitter
groups have contributed to increases in regional extremes globally.
In times of growing economic and climate inequalities, advancing
frameworks for attributing emissions to individual emitters caninform
global climate action and enhance climate justice.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butionsand competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41558-025-02325-x.
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Methods

We quantified intensity and frequency changes in extremely hot (dry)
months attributable to specific emitter groups. The methodological
framework relies on three steps (Fig. 1): first, we constructed coun-
terfactual emissions pathways (that is, emissions pathways with and
without the emissions of selected population groups); second, we
translated emissions into gridded temperature, precipitation and
potential drought data via a chain of computationally efficient emula-
tors; and third, we built on the framework of extreme event attribution
to quantify changes in the grid-cell-level distributions of the climatic
variables.

Werelied on the SPI-3 to identify meteorological droughts®. The
SPI-3 is computed from precipitation data only, meaning that it does
not account for changes in soil- and plant-based water demands. As
climate-driven precipitation signals are dominated by natural variability
and intermodel disagreement?, climate change-induced trends in
our drought indicator are probably a conservative estimate of actual
changes®. Therefore, we also computed the SPEI-3*%, The SPEI-3 takes
changesinwater demands via potential evapotranspiration (PET) into
account.Ideally, PET is estimated from temperatures, radiation, wind
speed and humidity via the Penman-Monteith equation®>*, Given that
our emulationframework only depicts temperature and precipitation,
werelied onthe Thornthwaite method to compute PET from tempera-
ture data only®. However, PET estimates via the Thornthwaite method
are prone to overestimations in terms of magnitude and temporal
trends®. This left us with an indicator for meteorological droughts
(SPI-3) that probably underestimates drought risks and an additional
indicator for potential droughts (SPEI-3 via the Thornthwaite method)
that probably provides an overestimation. We used the conservative
estimates in the main part of our analysis and show potential drought
risks in Supplementary Section 5.

Counterfactual emissions pathways

We assessed what our climate today would look like if the wealthiest
10%, 1% and 0.1% globally, as well as in the United States, EU27, India
and China, had not contributed to global emissions between 1990
and 2019. We followed ref. 52 to construct a time series of historic
baseline emissions from1850-2019 resolved by gas. Next, we removed
emitter-specific contributions from these baseline emissions (Fig. 1).
Todoso, werelied on a dataset of consumption-based CO,e emissions
categorized by country and income decile between 1990 and 2019°.
The estimates relate to all emissions except those from agriculture,
forestry and other land use. Our analysis required us to make assump-
tions about how to disaggregate the reported basket emissions into
individual gases. We focused on decomposing emissions into CO,,
nitrogen oxide (N,0) and CH,. These three gases make up 98.7% of the
total global GHG emissions (excluding agriculture, forestry and other
land use)*’. The composition of production-side GHG emissions varies
strongly by country, ranging from primarily CO,-based emissions (for
example, Singapore) to almost equal shares of CO, and CH,/N,0 (for
example, Qatar) and, in low-income countries in particular, primarily
CH,/N,0 (for example, Chad)**. The carbon inequality dataset from
ref. 3 employs input-output tables that redistribute production-side
emissions to consumers across countries. About one-half of global CH,
emissions areembodied in global trade, with household consumption
dominating the final demand category>. Given these considerations,
and alack of alternative data, we chose to apply the same decomposi-
tionassumptions across countries and emitter groups. For our central
estimate, we assumed that emissions for each GHG scale proportionally
with the globally aggregated emissions. We tested the sensitivity to
this assumption by providing two extreme cases in which the wealthy
emitters (1) solely emit carbon (CO,case) or (2) solely emit CH,and N,O
(non-CO,case). Note that in the non-CO, case, the emissions associ-
ated with the global top 10% are larger than the total global CH, and
N,O emissions combined, and we removed the excessive emissions

fromthe CO,time series. We converted between individual GHGs and
CO,e using the Global Warming Potential 100.

Emulator-based modelling approach

We transformed counterfactual emissions into grid-cell-level distri-
butions of temperature and precipitation using emulators and sub-
sequently computed drought measures from the emulated data. The
emulation consisted of two steps: first, converting emissions into
GMT; and second, translating GMT into grid-cell-level monthly mean
temperature and precipitation distributions (Fig. 1). The first transla-
tion step was carried out with MAGICC'**, MAGICC is a simple, com-
putationally efficient climate model for global climate indicators. Our
temperature outcomes were calculated with MAGICC v7.5in a proba-
bilistic setting that reflects the assessed uncertainty ranges from the
IPCC’s Sixth Assessment Report*. We generated 600 GMT trajectories
for each scenario. The second translation step was carried out using
MESMER-M-TP". MESMER-M-TP combines parametric approaches and
stochastic sampling to approximate the behaviour ofindividual climate
models. For any climate model, the emulator can be calibrated with a
small set of actual climate model data and then used to generate grid-
dedtemperature and precipitation data that statistically resemble the
climate model data. Here we calibrated MESMER-M-TP with 24 differ-
ent models from the Phase Six of the Coupled Model Intercomparison
Project (Supplementary Table 4). Subsequently, we converted each
GMT trajectory into a single gridded time series of temperature and
precipitation. We computed the SPI-3/SPEI-3 indicator following ref. 48
and used the gamma distribution for normalization. This provided us
with a dataset containing 4 variables x 600 realizations x 2,652 grid
points x 170 years x 12 months for each scenario.

Attribution framework

Traditional attribution studies typically aim tounderstand how climate
change altered the statistics of a specified observed extreme. Our
study deviates from this approach. We were interested in understand-
ing the extent to which changes in a broad class of historic extremes
can be related to emissions from specific emitter groups. We there-
fore used the framework for event attribution as a guideline* but
modified it according to our research questions. Most importantly,
our analysis fully relied on modelled data, meaning that we were not
taking observational data into account. Hence, the event attribution
framework was reduced to three essential steps: first, we defined
extreme events; second, we performed an analysis using emulated
(climate model) data; and third, we synthesized the hazards into an
attribution statement.

Extreme event definition

We defined extreme eventsrelative to the reference period 1850-1900
and focused on1-in-100-year (main text) and 1-in-50/1-in-10,000-year
(Supplementary Information) events.

Climate model analysis and hazard synthesis

Inafirststep, we tested whether changes in the grid-cell-level distribu-
tion of a climatic variable under agiven counterfactual scenario were
significantly different from its present-day distribution. To this end,
we computed the differences between the present-day and counter-
factual present-day distributions and employed a Student’s t-test™ to
verify that the distribution was significantly different fromzero. If this
was the case, we proceeded with the actual attribution. We used the
modelled distribution of climatic variables over the reference period
to derive grid-cell-specificintensity thresholds for our defined events.
To assess frequency changes, we counted how many times the refer-
enceintensity threshold was exceeded ina present-day (2020) climate
andinacounterfactual 2020 climate, and attributed the difference to
a specific emitter group. Similarly, we quantify intensity changes by
assessing how hot (dry) a specific extreme would be in a present-day
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climate as compared to a counterfactual climate, and attribute the
differencein values.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The datagenerated for this study are available viaZenodo at https://doi.
0rg/10.5281/zenodo.14860538 (ref. 58). The results can be reproduced
using public data records. The starting point of our analysis was time
series of per capita CO,e emissions from ref. 3. We also used historic
emissions data available in ref. 52. We used MAGICC v7.5 (refs. 10,56)
to translate our input data into GMT levels and MESMER-M-TPv0.1.0
(refs.11,59) to generate a large ensemble of temperature and precipi-
tation data.

Code availability

Our code s publicly available via GitHub at https://github.com/sarasita/
attribution.git. The exact version used to produce this study is avail-
ableviaZenodo at https://doi.org/10.5281/zenodo0.15011461 (ref. 60).
Note, parts of our code rely on processing data according to ref. 60.
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.
Study description We generate counterfactual emission pathways by subtracting the 1990-2019 emissions of specific emitter groups,
namely the wealthiest 10%/1%/0.1% globally, as well as in the US, the EU27, India, and China. We then convert these counterfactual
pathways into GMT levels and gridded climatic variables, allowing us to compare the 2020 climate against the hypothetical 2020
climate state that we would observe, if these groups had not emitted. Specifically, we attribute GMT levels and changes in the
probability and intensity of monthly temperature and meteorological drought extremes to the specified emitter groups.
Research sample We rely on an emulator based modeling approach that approximates the behavior of 24 different Earth System Models. For each

(counterfactual) emission pathway we generate an ensemble of 600 gridded temperature and potential drought realizations at
monthly resolution.

Sampling strategy Sample size was chosen in consistency with IPCC's AR6 uncertainty ranges from MAGICC v7.5.
Data collection Sa.S. collected the data through public repositories.

Timing and spatial scale  Temperature, precipitation and drought data is at monthly resolution and covers a 2.5°x2.5° latitude-longitude grid.

Data exclusions No data was excluded from the analysis.

Reproducibility Results are reproducible using public data repositories and the code we provide (https://github.com/sarasita/attribution.git). We
stored random seeds whenever our approach relied on stochastic processes. These can be made available upon request.
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Randomization n/a

Blinding n/a




Did the study involve field work? D Yes |X| No

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
D Antibodies |Z| |:| ChiIP-seq
D Eukaryotic cell lines |Z| |:| Flow cytometry
[] Palaeontology and archaeology X[ ] MRi-based neuroimaging

[ ] Animals and other organisms
|:| Clinical data
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