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High-income groups disproportionately 
contribute to climate extremes worldwide

 

Sarah Schöngart    1,2,3 , Zebedee Nicholls    1,4,5, Roman Hoffmann    1, 

Setu Pelz    1 & Carl-Friedrich Schleussner    1,3

Climate injustice persists as those least responsible often bear the greatest 

impacts, both between and within countries. Here we show how GHG 

emissions from consumption and investments attributable to the wealthiest 

population groups have disproportionately in�uenced present-day 

climate change. We link emissions inequality over the period 1990–2020 to 

regional climate extremes using an emulator-based framework. We �nd that 

two-thirds (one-�fth) of warming is attributable to the wealthiest 10% (1%), 

meaning that individual contributions are 6.5 (20) times the average per 

capita contribution. For extreme events, the top 10% (1%) contributed  

7 (26) times the average to increases in monthly 1-in-100-year heat extremes 

globally and 6 (17) times more to Amazon droughts. Emissions from the 

wealthiest 10% in the United States and China led to a two- to threefold 

increase in heat extremes across vulnerable regions. Quantifying the link 

between wealth disparities and climate impacts can assist in the discourse 

on climate equity and justice.

Over the past two decades, extreme events attributable to climate 
change resulted in an annual average of US$143 billion in damages1. 
How these costs could and should be covered—both between and 
within countries—is a matter of debate2. Central to this debate is the 
stark disparity between those responsible for emissions and those 
affected by their impacts. The wealthiest 10% of the global population 
accounted for nearly half of global emissions in 2019 through private 
consumption and investments, whereas the poorest 50% accounted for 
only one-tenth of global emissions3. At the same time, regions with low 
historic emissions and income levels are typically more frequently and 
severely exposed to climate impacts4,5 and have limited resources for 
adaptation6. This cause-and-effect injustice is widely acknowledged7, 
yet a quantification of how emissions inequality translates into unequal 
accountability for the resulting global temperature levels and extreme 
climate events is missing. This translation should account for the indi-
vidual warming contributions of emissions of non-CO2 GHGs, such as 
methane (CH4), given their major role in recent warming8.

In this study we combine wealth-based carbon inequality assess-
ments3 with an emulator-based climate modelling framework9 to 

systematically attribute changes in global mean temperature (GMT) 
levels and grid-cell-level climate extremes to emissions from different 
wealth groups. We use the Model for the Assessment of the Greenhouse 
Gas Induced Climate Change (MAGICC)10, a simple climate model, 
in conjunction with the Modular Earth System Model Emulator for 
Monthly Temperature and Precipitation (MESMER-M-TP)11, a model 
that is able to generate large ensembles of spatially explicit monthly 
temperature and precipitation data that closely resemble those of 
complex Earth system models at a fraction of the cost.

We use attribution science frameworks to link human-induced 
GHG emissions to changes in the modelled frequency and intensity 
of extremes12. These frameworks were originally developed to attri-
bute changes in total human emissions13,14. Today, they are increas-
ingly applied for source attribution; that is, to quantify the relative 
contributions of individual emitter groups, such as companies or 
countries15,16. When attributing impacts among multiple emitters, 
various approaches exist and serve distinct purposes17,18. Here we assess 
the changes in the characteristics of monthly extremes but for the 
emissions attributable to a specific emitter group15,18.
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one-fifth) than the respective group’s contributions to aggregated 
GHG basket emissions (Supplementary Table 2), underscoring the 
importance of non-CO2 GHGs21 (see also Supplementary Section 2).

To put these numbers into perspective, we defined a group’s equal 
share as the contribution to warming they would have if their per capita 
impact matched the global average. Therefore, we scaled the total 
GMT increase according to the group’s share of the global population 
(for example, the equal share of the global top 10% would be 10% of 
the full 0.61 °C increase). We then derived climate inequality factors 
(CIFs) as the group’s actual contribution to global warming relative 
to their equal share. CIFs increase from 6.5 for the top 10% to 20 (77) 
for the top 1% (0.1%), indicating an amplification of climate inequality 
with increasing wealth.

The full depth of the disproportion in contributions to GMT level 
becomes tangible when global emissions are rescaled according to  
the per capita profile of global income groups (Fig. 2b). If the entire 
world population had emitted like the bottom 50%, there would  
have been minimal additional warming since 1990. However, if the 
entire world population had emitted like the top 10%, 1% or 0.1%, the 
GMT increase since 1990 would have been 2.9 °C, 6.7 °C or 12.2 °C.

Between 1990 and 2020, emissions from the global top 10% arose 
primarily in the world’s highest emitting countries: the United States, 
the EU27, China and India (Fig. 2c). Note that the composition of  
the global top 10% shifts over time (Supplementary Fig. 1), and while 
our focus is on wealthy individuals from the world’s largest econo-
mies, those from smaller (wealthier, as well as less wealthy) countries 
also contribute disproportionately3. Income levels from regional top  
emitters deviate from their global counterparts: the top 10% and 1% in 
the United States and the EU27 (India and China) are wealthier (poorer) 
than the globally wealthiest 10% and 1% (Fig. 2d).

Attributed GMT shares by regional emitter groups combine 
within- and between-region inequality. In the United States (EU27), 
the top 10% contribute 3.1 (2.8) times more to global warming than 
the average citizen, but 17 (8) times more than the global average. For 
the United States, the contribution of the top 10% alone exceedes the 
entire country’s equal share. This relative inequality increases with 
increasing wealth: the top 1% in the United States (EU27) contribute 
53 (21) times their equal shares, and the top 0.1% contribute 190 (64) 
times their equal shares. In China, where the overall CIF is near 1, the 
top 10%, 1% and 0.1% emit 4, 13 and 50 times their equal shares, showing 
even greater regional influence from societal elites. Similarly, in India, 
where the national CIF is 0.3 (implying that the countries per capita 
average emissions are below the global average), the top 10%, 1% and 
0.1% emit 1.2, 4 and 10 times the global average.

We generate counterfactual emission pathways by subtracting the 
1990–2019 emissions of specific emitter groups, namely the wealthi-
est 10%, 1% and 0.1% globally, as well as in the United States, EU27, 
India and China (Fig. 1b). Emissions data are drawn from ref. 3 and 
include emissions from domestic consumption, public and private 
investments and trade. These emissions are attributed primarily to 
consumers, except emissions from capital formation in production 
sectors, which are attributed to firm owners3. Emissions are reported 
as a basket of GHGs with warming expressed in CO2 equivalents. We 
convert these counterfactual pathways into GMT levels and gridded 
climatic variables (Fig. 1a), allowing us to compare the 2020 climate 
against the hypothetical 2020 climate state that we would observe if 
these groups had not emitted. Specifically, we attribute GMT levels 
and changes in the probability and intensity of extremely hot and dry 
months (Fig. 1c). Prolonged heat poses a significant burden on human 
health19 and sustained precipitation deficits impair crop yields and 
threaten water resources20, meaning that both climate extremes are 
highly relevant in driving climate impacts. We measure meteorological 
droughts with the standardized precipitation index computed over 
3-month periods (SPI-3)20.

We quantify climate impacts associated with wealthy emitters 
and compare them to the global average per capita contribution. We 
do not assess what would constitute fair or just emissions, nor do we 
assign direct responsibility for the resulting impacts. For illustration, 
we also provide counterfactual warming outcomes based on rescal-
ing global emissions according to the per capita profile of individual 
income percentiles.

Inequality in attributed global warming 
contributions
Our modelling framework depicts natural variability and uncer-
tainty in the global response to emission changes (Methods). Unless 
mentioned otherwise, we provide median results with the 5th–95th  
confidence intervals in parentheses. All results are statistically signifi-
cant (established via a one-sample t-tests, Methods) unless explicitly 
marked otherwise. As our database provides only basket emissions, we 
derived the main results by assuming that emissions for each GHG scale 
proportionally with the globally aggregated emissions (Methods). We 
explore the sensitivity to this assumption in Supplementary Section 2.

GMT in 2020 is 0.61 °C (0.45–0.83 °C) higher than in 1990. We 
found that about 65% (0.40 °C (0.27–0.56 °C)) of this increase is attrib-
utable to the global top 10%, 20% (0.12 °C (0.09–0.17 °C)) to the top 
1% and 8% (0.05 °C (0.03–0.07 °C)) to the top 0.1% (Fig. 2a and Supple-
mentary Table 3). These warming contributions are higher (by about 
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Fig. 1 | Overview of the modelling framework using a schematic example. 

Counterfactual emissions were converted into GMT using the simple climate 

model MAGICC and subsequently translated into grid-cell-level realizations 

of climatic variables using MESMER-M-TP. a, Counterfactual CO2 emissions 

pathways. Historic emissions with and without contributions from selected 

emitter groups after 1990 (orange). b, Median GMT levels for historic and 

counterfactual emissions pathways (solid lines) along with 5th–95th confidence 

intervals (shaded envelopes) derived from 600 ensemble members. c, Reference, 

present-day and counterfactual distributions at a single grid-cell using 

temperature as an example.
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Major disparities in attributable extremes 
worldwide
We attribute regional increases in the frequency of extremely hot 
(dry) months, here defined as 1-in-100-year events in a pre-industrial  
climate, to the emissions of the global top 10% (Fig. 3a), so throughout 
this Article extremes or extreme events refer to a month being at least as 
hot (dry) as the hottest (driest) 1% of months in a pre-industrial climate. 
We state attribution results as additional event counts over a modelled 
100-year period of current climate conditions compared with those in 
1990 (Methods). For example, 10 additional attributable events indicate 
that a pre-industrial 1-in-100-year event happens an additional 10 times 
within 100 years, meaning that its probability has increased tenfold.

For heat extremes, changes are most (least) pronounced in  
August (February), where 11.5 [8.5–15.4] (3.5 [2.4–4.3]) additional 
events are attributable to the global top 10%. These changes refer 
to the global median over land that is predominantly located on the 
Northern Hemisphere. Areas in strongly affected regions, such as the 
Amazon region, Southeast Asia or central Africa, face months with up 
to 30-fold increases in probability (see also Supplementary Figs. 5–8).

To account for differences in seasonality between the Northern 
Hemisphere and Southern Hemisphere, we assessed heat extremes 
during the month with peak temperatures (Supplementary Fig. 4). 
Emissions from 1990–2020 led to a 12.3-fold (9.7–17.9) increase in 
the probability of heat extremes in the peak temperature month. 

The top 10% (1%) contribute 7.3 (25.7) times the global average to this  
(Supplementary Figs. 9–13e). In addition, the intensities of these 
extremes increased by 0.83 °C (0.75–0.97 °C) since 1990. Of this 
increase, 0.55 °C (0.50–0.67 °C) (0.17 °C (0.16–0.21 °C)) is attributable 
to the top 10% (1%), suggesting that their contribution is 6.7 (21.1) times 
higher than the global average (Supplementary Figs. 9–13).

Attribution results for meteorological drought extremes strongly 
depend on region and month, with robust drying found mainly in Central 
America, the Amazon, the Mediterranean, southern Africa and north-
ern Australia (Fig. 3d and Supplementary Figs. 5–8). This is expected, 
given the considerable intermodel disagreement and large uncertain-
ties in regional precipitation projections22–24. We found the strongest 
attri butable drying trend in the Amazon region in October. Overall, 
the region faces a threefold increase (1.7–4.2) in extreme probability 
compared with 1990 (Fig. 3b). The top 10% (1%) contribute 6.1 (16.7) 
times the global average to this increase. The Amazon region is of global 
importance, given its uniquely biodiverse system and its major role in 
the global carbon cycle. Drought events over the past century have 
already negatively impacted carbon storage in Amazonian rainforests25.

Overall, the spatial disparity in attributable changes at the 
grid-cell-level (Fig. 3 and Supplementary Figs. 5–13) implies that the 
regions that disproportionately contribute to the emissions of the top 
10% (for example, the EU27 and the United States; Fig. 2) face smaller 
increases than regions that have contributed very little (for example, 
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western North America and west and central Europe compared with 
the Amazon region and west southern Africa in Fig. 3c,d).

The relatively small (attributable) changes over India and parts of 
China and the simultaneously high intermodel disagreement are worth 
noting, given that they are inconsistent with the increasing number of 
climate-related disasters India is already facing26. We assume that this 
is related to the climate effects of air pollution, which we discuss in 
greater detail in Supplementary Section 3.

Attributing transboundary impacts of regional 
emissions
The inequality in warming contributions from affluent groups 
in high-emitting regions exceeds the inequality in their global 

counterparts (Fig. 2). This disparity also appears at the grid-cell-level: in 
the global median, emissions from the top 10% (1%) in the United States 
are associated with 1.3 (1.0–1.8) (0.3 (0.3–0.5)) additional 1-in-100-year 
heat events during peak temperature months. This impact represents 
23 (60) times the global average contribution and about 3 (2) times the 
relative contribution of the global top 10% (1%) (Fig. 3). The increase in 
extreme heat is unevenly distributed across regions. For example, in 
heat-affected areas such as the Amazon and southeast Africa, emissions 
from the top 10% in China (the United States) are linked to 2.7 (1.9–3.2) 
(2.5 (1.7–2.8)) and 2.7 (1.1–3.4) (2.5 (1.0–3.2)) additional occurrences of 
extreme heat during months with peak temperatures (Fig. 4). In these 
areas, we can also robustly attribute heat extremes to the regional 
top 1%. In the Amazon, 0.8 (0.7–1.0) additional heat extremes are 
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of heat extremes (a) and drought extremes in the Amazon (b) across grid cells 

attributable to the global top 10%. Distributions were derived by first computing 

the median attribution results at each grid cell (estimated from 15,000 ensemble 
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attributable to the top 1% in China. This corresponds to an increase in 
occurrence frequency of 80%.

Attributing changes in extreme events to country-specific wealthy 
emitter groups becomes increasingly challenging as emitter groups 
decrease in per capita size, meaning that their cumulative emissions 
decrease even if their relative emissions contributions increase. Pro-
jected temperature distributions are characterized by strong changes 
in the trend and by consistency across models, allowing robust attribu-
tion results even for seemingly small emission amounts, particularly 
in highly affected regions. The magnitude depends on the definition 
of extremes, with tail risks seeing the strongest increase (Supplemen-
tary Figs. 18–21). For droughts, the situation is more complex. The 
SPI-3 signal is dominated by variability and considerable intermodel 
disagreement, which prevented us from deriving robust attribution 
results when emissions are small.

Discussion
This study introduces a framework to link wealth-based emissions to 
shifts in GMT and to changes in regional monthly heat and meteorologi-
cal drought extremes. We found that the wealthiest 10% contributed 
6.5 times more to global warming than the average, with the top 1% and 
0.1% contributing 20 and 76 times more, respectively. For heat, this 
imbalance is more pronounced at the grid-cell-level: the wealthiest 10% 
and 1% contributed over 7 and 25 times more than the global average to 
the increase in frequency of pre-industrial 1-in-100-year heat extremes 
during months with peak summer temperatures. The warming contri-
butions of the wealthy are associated with considerable transboundary 
effects—for example, the contributions of the wealthiest 10% within 
the United States and China led to a two- to threefold increase in heat 
extremes across vulnerable regions such as the Amazon, Southeast 
Asia and southeast Africa. The robust attribution of drought signals is 
more complex. We found the strongest signals in the Amazon region in 
October, where the emissions of the global top 10% (1%) led to a 2.3-fold 
(0.8-fold) increase in the frequency of extreme droughts.

Our analysis also underscores the critical role of CH4 emissions in 
near-term warming (Supplementary Fig. 2) and calls for new research 
to disentangle income-based emissions at the level of individual gases. 
Reducing CH4 emissions in line with Paris Agreement-compatible 
pathways could yield immediate reductions in global temperatures 
and climate extremes27.

We note that our study focuses on monthly extreme heat (that is, 
extremely hot months), meaning that heatwaves—defined as prolonged 
periods of abnormally high temperatures lasting from two days to 
months28—do not directly relate to our metric. However, the prob-
ability of extreme daily temperatures is amplified during extremely 
hot months29, implying that attributable results for short-duration 
heatwaves might be even more pronounced. Further research is needed 
to explicitly explore this relationship.

Wealth-based emissions comprise private consumption and 
investment in capital formation across production sectors that sup-
ply goods and services consumed by society. Recognizing the associ-
ated unequal warming contributions can inform policy interventions. 
For example, deliberation over a coordinated global wealth tax can 
draw on this work, illustrating the climate co-benefits of attenuating 
stark wealth-based disparities in climate impact responsibilities30,31. 
The transboundary impacts we identify highlight how high-emitting 
individuals contribute to intensified extremes, even in distant regions. 
Similarly, the warming attributable to the investments of the wealthy 
underscores the need to realign financial flows to meet global climate 
goals32. This is particularly relevant for the wealthiest 1% and 0.1%, 
whose transboundary contributions to worsening local extremes arise 
primarily through investments, rather than consumption. Efforts to 
redirect these financial flows should also consider the shared respon-
sibilities of governments to expedite systemic changes in financial and 
regulatory structures33.

Our granular impact analysis shows that low-income regions 
incur the brunt of the harm caused by emissions concentrated 
among wealthier populations worldwide. From an adaptation and 
loss-and-damage perspective, this provides a basis for policy dis-
cussions around contributions to compensatory and preventative 
measures. The amounts of adaptation and loss-and-damage finance 
provided currently are minuscule compared with the assessed needs34. 
Our work motivates innovative policy instruments targeted at wealthy 
individuals to bridge these glaring finance gaps35. Such policies can also 
improve perceptions of climate justice, a vital factor in fostering social 
acceptance of climate action36,37. Moving towards evidence-based and 
targeted policies that reflect polluter-pays principles, including on 
the domestic level in terms of individual contributions, may therefore 
be an important cornerstone to enhance policy support for climate 
action in general.
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Fig. 4 | Increase in the frequency of 1-in-100-year peak summer heat extremes 

in selected regions attributable to the top 10% and 1% of emitters. Left: median 

number of additional heat extremes in selected regions that are attributable to 

the top 10% of emitters in China, the United States, the EU27 and India. Right: 

same as on the left but for the top 1% of emitters. Wider bars indicate that more 
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Considerations of our results in policy debates must, how-
ever, recog nize the conceptual challenges and value judgements in 
our approach and implementation. First, our attribution relies on 
consumption-based emissions accounting, allocating emissions 
between consumers and shareholders through shared ownership (see 
ref. 3). Our approach contrasts with production-based approaches 
used to quantify the responsibilities of producers15. Exploring diverse 
accounting frameworks is key to developing policy mechanisms that 
address multiple dimensions, but requires care in determining responsi-
bility. Second, we employ the ‘but for’ attribution method. This approach 
directly links emissions to observed climate change while accounting 
for the timing of emissions and impacts. However, it is sensitive to the 
sequence of emissions removal and the design of the counterfactual 
scenarios18. Third, our approach is limited to changes in climate haz-
ards only, and does not account for on-the-ground vulnerabilities and 
exposure, which are often key to driving the eventual impact of extreme 
climate events38. Integrating other causal drivers into extreme event 
attribution analysis increasingly allows us to address those limitations38,39 
in a step towards using extreme event attribution to inform the discourse  
on loss and damage40,41. At the same time, wealth levels are a key deter-
minant for adaptive capacity and vulnerability in the face of climate  
change, particularly at the levels of households and individuals42,43. 
We would therefore expect wealth-related drivers of vulnerability  
and exposure to further exacerbate the inequalities in responsibilities 
and experience of the impacts of the climate hazards we studied here.

All quantitative estimates are tied to these three assumptions, 
and we must recognize the choices and value judgements involved 
in the analysis when evaluating the ethical and legal implications of 
our findings.

Our analysis is further limited by the lack of data on how GHG  
emission compositions vary with income and wealth. This limits the 
accuracy of our results, given the role of non-CO2 GHGs in recent 
warming. In addition, our drought indicator only considers pre-
cipitation, which may lead to underestimations in drought risks24. 
Finally, our analysis is based on modelled data, which may deviate 
from observations44,45.

Accordingly, our analysis does not explicitly assign full responsibil-
ity for resulting climate impacts, nor does it determine fair emission 
levels for any income group. Such determinations require an integrated 
view of fairness, justice and socio-economic factors46,47, with different 
reference points for societies at varying levels of development.

In conclusion, our findings demonstrate how individual emitter 
groups have contributed to increases in regional extremes globally. 
In times of growing economic and climate inequalities, advancing 
frameworks for attributing emissions to individual emitters can inform 
global climate action and enhance climate justice.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41558-025-02325-x.

References
1. Newman, R. & Noy, I. The global costs of extreme weather that are 

attributable to climate change. Nat. Commun. 14, 6103 (2023).

2. Warner, K. & Weisberg, M. A funding mosaic for loss and damage. 

Science 379, 219–219 (2023).

3. Chancel, L. Global carbon inequality over 1990–2019.  

Nat. Sustain. 5, 931–938 (2022).

4. Wallemacq, P., Below, R. & McClean, D. Economic Losses, Poverty 

and Disasters: 1998-2017 (United Nations O�ice for Disaster Risk 

Reduction, 2018); https://www.preventionweb.net/files/61119_

credeconomiclosses.pdf

5. Di�enbaugh, N. S. & Burke, M. Global warming has increased 

global economic inequality. Proc. Natl Acad. Sci. USA 116, 

9808–9813 (2019).

6. Hallegatte, S. & Rozenberg, J. Climate change through a poverty 

lens. Nat. Clim. Change 7, 250–256 (2017).

7. Dhakal, S. et al. in Climate Change 2022: Mitigation of Climate 

Change (eds Shukla, P. R. et al.) 215–294 (IPCC, Cambridge Univ. 

Press, 2023).

8. Mar, K. A., Unger, C., Walderdor�, L. & Butler, T. Beyond CO2 

equivalence: the impacts of methane on climate, ecosystems, 

and health. Environ. Sci. Policy 134, 127–136 (2022).

9. Beusch, L., Gudmundsson, L. & Seneviratne, S. I. Emulating Earth 

system model temperatures with MESMER: from global mean 

temperature trajectories to grid-point-level realizations on land. 

Earth Syst. Dynam. 11, 139–159 (2020).

10. Meinshausen, M., Raper, S. C. & Wigley, T. M. Emulating coupled 

atmosphere-ocean and carbon cycle models with a simpler 

model, MAGICC6 – part 1: model description and calibration. 

Atmos. Chem. Phys. 11, 1417–1456 (2011).

11. Schöngart, S. Introducing the MESMER-M-TPv0.1.0 module: spatially 

explicit Earth system model emulation for monthly precipitation  

and temperature. EGUsphere 2024, 8283–8320 (2024).

12. Otto, F. E. Attribution of extreme events to climate change.  

Annu. Rev. Environ. Resour. 48, 813–828 (2023).

13. Stott, P. A., Stone, D. A. & Allen, M. R. Human contribution to the 

European heatwave of 2003. Nature 432, 610–614 (2004).

14. Van Oldenborgh, G. J. et al. Pathways and pitfalls in extreme event 

attribution. Climatic Change 166, 13 (2021).

15. Beusch, L. et al. Responsibility of major emitters for country-level 

warming and extreme hot years. Commun. Earth Environ. 3, 7 

(2022).

16. Callahan, C. W. & Mankin, J. S. National attribution of historical 

climate damages. Climatic Change 172, 40 (2022).

17. Trudinger, C. & Enting, I. Comparison of formalisms for 

attributing responsibility for climate change: non-linearities in 

the brazilian proposal approach. Climatic Change 68, 67–99 

(2005).

18. Otto, F. E., Skeie, R. B., Fuglestvedt, J. S., Berntsen, T. & Allen, M. R. 

Assigning historic responsibility for extreme weather events.  

Nat. Clim. Change 7, 757–759 (2017).

19. De Polt, K. et al. Quantifying impact-relevant heatwave durations. 

Environ. Res. Lett. 18, 104005 (2023).

20. Seneviratne, S. et al. 2021: Weather and climate extreme events in 

a changing climate. in Climate Change 2021: The Physical Science 

Basis. Contribution of Working Group I to the Sixth Assessment 

Report of the Intergovernmental Panel on Climate Change (eds 

Masson-Delmotte, V. et al.), 1513–1766 (IPCC, Cambridge Univ. 

Press 2021).

21. Allen, M. R. et al. Indicate separate contributions of long-lived 

and short-lived greenhouse gases in emission targets. npj Clim. 

Atmos. Sci. 5, 5 (2022).

22. Cook, B. I. et al. Twenty-first century drought projections in the 

CMIP6 forcing scenarios. Earth Future 8, e2019EF001461 (2020).

23. Wu, Y. et al. Hydrological projections under CMIP5 and CMIP6: 

sources and magnitudes of uncertainty. Bull. Am. Meteorol. Soc. 

105, E59–E74 (2024).

24. Chen, D. et al. 2021: Framing, context, and methods. in Climate 

Change 2021: The Physical Science Basis. Contribution of Working 

Group I to the Sixth Assessment Report of the Intergovernmental 

Panel on Climate Change (eds Masson-Delmotte, V. et al.) 147–286 

(IPCC, Cambridge Univ. Press, 2021).

25. Yao, Y., Ciais, P., Viovy, N., Joetzjer, E. & Chave, J. How drought 

events during the last century have impacted biomass carbon  

in amazonian rainforests. Glob. Change Biol. 29, 747–762  

(2023).

http://www.nature.com/natureclimatechange
https://doi.org/10.1038/s41558-025-02325-x
https://www.preventionweb.net/files/61119_credeconomiclosses.pdf
https://www.preventionweb.net/files/61119_credeconomiclosses.pdf


Nature Climate Change | Volume 15 | June 2025 | 627–633 633

Article https://doi.org/10.1038/s41558-025-02325-x

26. Kumar, N. et al. Joint behaviour of climate extremes across India: 

past and future. J. Hydrol. 597, 126185 (2021).

27. McKenna, C. M., Maycock, A. C., Forster, P. M., Smith, C. J. & 

Tokarska, K. B. Stringent mitigation substantially reduces risk of 

unprecedented near-term warming rates. Nat. Clim. Change 11, 

126–131 (2021).

28. IPCC Climate Change 2022: Impacts, Adaptation and Vulnerability 

(eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2023).

29. Zeppetello, L. R. V., Battisti, D. S. & Baker, M. B. The physics of heat 

waves: what causes extremely high summertime temperatures?  

J. Clim. 35, 2231–2251 (2022).

30. Chancel, L., Bothe, P. & Voituriez, T. The potential of wealth 

taxation to address the triple climate inequality crisis. Nat. Clim. 

Change 14, 5–7 (2024).

31. Zucman, G. A Blueprint for a Coordinated Minimum E�ective 

Taxation Standard for Utra-High-Net-Worth Individuals (Tax 

Observatory, 2024); https://www.taxobservatory.eu/www-site/ 

uploads/2024/06/report-g20-24_06_24.pdf

32. Pachauri, S. et al. Fairness considerations in global mitigation 

investments. Science 378, 1057–1059 (2022).

33. Bhattacharya, A., Songwe, V., Soubeyran, E. & Stern, N. Raising  

Ambition and Accelerating Delivery of Climate Finance (Grantham  

Research Institute on Climate Change and the Environment,  

2024); https://www.lse.ac.uk/granthaminstitute/wp-content/ 

uploads/2024/11/Raising-ambition-and-accelerating-delivery- 

of-climate-finance_Third-IHLEG-report.pdf

34. Dibley, A. et al. Biases in ‘sustainable finance’ metrics could 

hinder lending to those that need it most. Nature 634, 294–297 

(2024).

35. Serdeczny, O. & Lissner, T. Research agenda for the loss and 

damage fund. Nat. Clim. Change 13, 412–412 (2023).

36. Ogunbode, C. A. et al. Climate justice beliefs related to climate 

action and policy support around the world. Nat. Clim. Change 14, 

1144–1150 (2024).

37. Berger, J. & Liebe, U. E�ective climate action must address both 

social inequality and inequality aversion. npj Clim. Action 4, 1 (2025).

38. Jézéquel, A. et al. Broadening the scope of anthropogenic 

influence in extreme event attribution. Environ. Res. Clim. 3, 

042003 (2024).

39. Perkins-Kirkpatrick, S. E. et al. Frontiers in attributing climate 

extremes and associated impacts. Front. Clim. 6, 1455023 (2024).

40. Noy, I. et al. Event attribution is ready to inform loss and damage 

negotiations. Nat. Clim. Change 13, 1279–1281 (2023).

41. King, A. D., Grose, M. R., Kimutai, J., Pinto, I. & Harrington, L. J. 

Event attribution is not ready for a major role in loss and damage. 

Nat. Clim. Change 13, 415–417 (2023).

42. Andrijevic, M. et al. Towards scenario representation of adaptive 

capacity for global climate change assessments. Nat. Clim. 

Change 13, 778–787 (2023).

43. Smiley, K. T. et al. Social inequalities in climate change-attributed 

impacts of hurricane Harvey. Nat. Commun. 13, 3418 (2022).

44. Jensen, L., Gerdener, H., Eicker, A., Kusche, J. & Fiedler, S. 

Observations indicate regionally misleading wetting and drying 

trends in CMIP6. npj Clim. Atmos. Sci. 7, 249 (2024).

45. Kim, Y.-H., Min, S.-K., Zhang, X., Sillmann, J. & Sandstad, M. 

Evaluation of the CMIP6 multi-model ensemble for climate 

extreme indices. Weather Clim. Extremes 29, 100269  

(2020).

46. Zimm, C. et al. Justice considerations in climate research. Nat. 

Clim. Change 14, 22–30 (2024).

47. Kikstra, J. S., Mastrucci, A., Min, J., Riahi, K. & Rao, N. D. Decent 

living gaps and energy needs around the world. Environ. Res. Lett. 

16, 095006 (2021).

Publisher’s note Springer Nature remains neutral with regard to 

jurisdictional claims in published maps and institutional a�iliations.

Open Access This article is licensed under a Creative Commons 

Attribution 4.0 International License, which permits use, sharing, 

adaptation, distribution and reproduction in any medium or format, 

as long as you give appropriate credit to the original author(s) and the 

source, provide a link to the Creative Commons licence, and indicate 

if changes were made. The images or other third party material in this 

article are included in the article’s Creative Commons licence, unless 

indicated otherwise in a credit line to the material. If material is not 

included in the article’s Creative Commons licence and your intended 

use is not permitted by statutory regulation or exceeds the permitted 

use, you will need to obtain permission directly from the copyright 

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

© The Author(s) 2025, corrected publication 2025

http://www.nature.com/natureclimatechange
https://www.taxobservatory.eu/www-site/uploads/2024/06/report-g20-24_06_24.pdf
https://www.taxobservatory.eu/www-site/uploads/2024/06/report-g20-24_06_24.pdf
https://www.lse.ac.uk/granthaminstitute/wp-content/uploads/2024/11/Raising-ambition-and-accelerating-delivery-of-climate-finance_Third-IHLEG-report.pdf
https://www.lse.ac.uk/granthaminstitute/wp-content/uploads/2024/11/Raising-ambition-and-accelerating-delivery-of-climate-finance_Third-IHLEG-report.pdf
https://www.lse.ac.uk/granthaminstitute/wp-content/uploads/2024/11/Raising-ambition-and-accelerating-delivery-of-climate-finance_Third-IHLEG-report.pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Climate Change

Article https://doi.org/10.1038/s41558-025-02325-x

Methods
We quantified intensity and frequency changes in extremely hot (dry) 
months attributable to specific emitter groups. The methodological 
framework relies on three steps (Fig. 1): first, we constructed coun-
terfactual emissions pathways (that is, emissions pathways with and 
without the emissions of selected population groups); second, we 
translated emissions into gridded temperature, precipitation and 
potential drought data via a chain of computationally efficient emula-
tors; and third, we built on the framework of extreme event attribution 
to quantify changes in the grid-cell-level distributions of the climatic 
variables.

We relied on the SPI-3 to identify meteorological droughts20. The 
SPI-3 is computed from precipitation data only, meaning that it does 
not account for changes in soil- and plant-based water demands. As 
climate-driven precipitation signals are dominated by natural variability  
and intermodel disagreement24, climate change-induced trends in 
our drought indicator are probably a conservative estimate of actual 
changes20. Therefore, we also computed the SPEI-348. The SPEI-3 takes 
changes in water demands via potential evapotranspiration (PET) into 
account. Ideally, PET is estimated from temperatures, radiation, wind 
speed and humidity via the Penman–Monteith equation20,49. Given that 
our emulation framework only depicts temperature and precipitation, 
we relied on the Thornthwaite method to compute PET from tempera-
ture data only50. However, PET estimates via the Thornthwaite method 
are prone to overestimations in terms of magnitude and temporal 
trends51. This left us with an indicator for meteorological droughts 
(SPI-3) that probably underestimates drought risks and an additional 
indicator for potential droughts (SPEI-3 via the Thornthwaite method) 
that probably provides an overestimation. We used the conservative 
estimates in the main part of our analysis and show potential drought 
risks in Supplementary Section 5.

Counterfactual emissions pathways
We assessed what our climate today would look like if the wealthiest 
10%, 1% and 0.1% globally, as well as in the United States, EU27, India 
and China, had not contributed to global emissions between 1990 
and 2019. We followed ref. 52 to construct a time series of historic 
baseline emissions from 1850–2019 resolved by gas. Next, we removed 
emitter-specific contributions from these baseline emissions (Fig. 1). 
To do so, we relied on a dataset of consumption-based CO2e emissions 
categorized by country and income decile between 1990 and 20193. 
The estimates relate to all emissions except those from agriculture, 
forestry and other land use. Our analysis required us to make assump-
tions about how to disaggregate the reported basket emissions into 
individual gases. We focused on decomposing emissions into CO2, 
nitrogen oxide (N2O) and CH4. These three gases make up 98.7% of the 
total global GHG emissions (excluding agriculture, forestry and other 
land use)53. The composition of production-side GHG emissions varies 
strongly by country, ranging from primarily CO2-based emissions (for 
example, Singapore) to almost equal shares of CO2 and CH4/N2O (for 
example, Qatar) and, in low-income countries in particular, primarily 
CH4/N2O (for example, Chad)54. The carbon inequality dataset from 
ref. 3 employs input–output tables that redistribute production-side 
emissions to consumers across countries. About one-half of global CH4 
emissions are embodied in global trade, with household consumption 
dominating the final demand category55. Given these considerations, 
and a lack of alternative data, we chose to apply the same decomposi-
tion assumptions across countries and emitter groups. For our central 
estimate, we assumed that emissions for each GHG scale proportionally 
with the globally aggregated emissions. We tested the sensitivity to 
this assumption by providing two extreme cases in which the wealthy 
emitters (1) solely emit carbon (CO2case) or (2) solely emit CH4 and N2O 
(non-CO2case). Note that in the non-CO2 case, the emissions associ-
ated with the global top 10% are larger than the total global CH4 and 
N2O emissions combined, and we removed the excessive emissions 

from the CO2 time series. We converted between individual GHGs and  
CO2e using the Global Warming Potential 100.

Emulator-based modelling approach
We transformed counterfactual emissions into grid-cell-level distri-
butions of temperature and precipitation using emulators and sub-
sequently computed drought measures from the emulated data. The 
emulation consisted of two steps: first, converting emissions into 
GMT; and second, translating GMT into grid-cell-level monthly mean 
temperature and precipitation distributions (Fig. 1). The first transla-
tion step was carried out with MAGICC10,56. MAGICC is a simple, com-
putationally efficient climate model for global climate indicators. Our 
temperature outcomes were calculated with MAGICC v7.5 in a proba-
bilistic setting that reflects the assessed uncertainty ranges from the 
IPCC’s Sixth Assessment Report24. We generated 600 GMT trajectories 
for each scenario. The second translation step was carried out using 
MESMER-M-TP11. MESMER-M-TP combines parametric approaches and 
stochastic sampling to approximate the behaviour of individual climate 
models. For any climate model, the emulator can be calibrated with a 
small set of actual climate model data and then used to generate grid-
ded temperature and precipitation data that statistically resemble the 
climate model data. Here we calibrated MESMER-M-TP with 24 differ-
ent models from the Phase Six of the Coupled Model Intercomparison 
Project (Supplementary Table 4). Subsequently, we converted each 
GMT trajectory into a single gridded time series of temperature and 
precipitation. We computed the SPI-3/SPEI-3 indicator following ref. 48 
and used the gamma distribution for normalization. This provided us 
with a dataset containing 4 variables × 600 realizations × 2,652 grid 
points × 170 years × 12 months for each scenario.

Attribution framework
Traditional attribution studies typically aim to understand how climate 
change altered the statistics of a specified observed extreme. Our 
study deviates from this approach. We were interested in understand-
ing the extent to which changes in a broad class of historic extremes 
can be related to emissions from specific emitter groups. We there-
fore used the framework for event attribution as a guideline14 but 
modified it according to our research questions. Most importantly, 
our analysis fully relied on modelled data, meaning that we were not 
taking observational data into account. Hence, the event attribution 
framework was reduced to three essential steps: first, we defined 
extreme events; second, we performed an analysis using emulated 
(climate model) data; and third, we synthesized the hazards into an 
attribution statement.

Extreme event definition
We defined extreme events relative to the reference period 1850–1900 
and focused on 1-in-100-year (main text) and 1-in-50/1-in-10,000-year 
(Supplementary Information) events.

Climate model analysis and hazard synthesis
In a first step, we tested whether changes in the grid-cell-level distribu-
tion of a climatic variable under a given counterfactual scenario were 
significantly different from its present-day distribution. To this end, 
we computed the differences between the present-day and counter-
factual present-day distributions and employed a Student’s t-test57 to 
verify that the distribution was significantly different from zero. If this 
was the case, we proceeded with the actual attribution. We used the 
modelled distribution of climatic variables over the reference period 
to derive grid-cell-specific intensity thresholds for our defined events. 
To assess frequency changes, we counted how many times the refer-
ence intensity threshold was exceeded in a present-day (2020) climate 
and in a counterfactual 2020 climate, and attributed the difference to 
a specific emitter group. Similarly, we quantify intensity changes by 
assessing how hot (dry) a specific extreme would be in a present-day 
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climate as compared to a counterfactual climate, and attribute the 
difference in values.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data generated for this study are available via Zenodo at https://doi.
org/10.5281/zenodo.14860538 (ref. 58). The results can be reproduced 
using public data records. The starting point of our analysis was time 
series of per capita CO2e emissions from ref. 3. We also used historic 
emissions data available in ref. 52. We used MAGICC v7.5 (refs. 10,56) 
to translate our input data into GMT levels and MESMER-M-TPv0.1.0 
(refs. 11,59) to generate a large ensemble of temperature and precipi-
tation data.

Code availability
Our code is publicly available via GitHub at https://github.com/sarasita/
attribution.git. The exact version used to produce this study is avail-
able via Zenodo at https://doi.org/10.5281/zenodo.15011461 (ref. 60). 
Note, parts of our code rely on processing data according to ref. 60.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection The data generated for this study is available at https://zenodo.org/records/14860538.  The results can be reproduced using public data 

records. CO2-e per capita emissions are available from https://lucaschancel.com/global-carbon-inequality-1990-2019/. We take historic 

emissions from https://gmd.copernicus.org/articles/13/5175/2020/ and references therein. 

Data analysis We rely on MAGICC v7.5 (https://magicc.org/download/magicc7) to translate our input data into GMT levels. We then rely on MESMER-M-

TPv0.1.0 (https://github.com/sarasita/mesmer-m-tp.git) to generate a large-ensemble of temperature and precipitation data. Our code is 

available at https://github.com/sarasita/attribution.git and archived at https://zenodo.org/records/15011461. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The data generated for this study is available at ref. [34] (https://doi.org/10.5281/zenodo.14039672). The results can be reproduced using public data records as 

outlined in the paper.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender n/a

Population characteristics n/a

Recruitment n/a

Ethics oversight n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We generate counterfactual emission pathways by subtracting the 1990-2019 emissions of specific emitter groups, 

namely the wealthiest 10%/1%/0.1% globally, as well as in the US, the EU27, India, and China. We then convert these counterfactual 

pathways into GMT levels and gridded climatic variables, allowing us to compare the 2020 climate against the hypothetical 2020 

climate state that we would observe, if these groups had not emitted.  Specifically, we attribute GMT levels and changes in the 

probability and intensity of monthly temperature and meteorological drought extremes to the specified emitter groups. 

Research sample We rely on an emulator based modeling approach that approximates the behavior of 24 different Earth System Models. For each 

(counterfactual) emission pathway we generate an ensemble of 600 gridded temperature and potential drought realizations at 

monthly resolution.

Sampling strategy Sample size was chosen in consistency with IPCC's AR6 uncertainty ranges from MAGICC v7.5. 

Data collection Sa.S. collected the data through public repositories.

Timing and spatial scale Temperature, precipitation and drought data is at monthly resolution and covers a 2.5°x2.5° latitude-longitude grid. 

Data exclusions No data was excluded from the analysis. 

Reproducibility Results are reproducible using public data repositories and the code we provide (https://github.com/sarasita/attribution.git). We 

stored random seeds whenever our approach relied on stochastic processes. These can be made available upon request.  

Randomization n/a 

Blinding n/a
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Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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